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Realization of the Poincar6 group as a subgroup of GL(5, R) that maps an affine 
set into itself is shown to lead to a well-defined minimal replacement operator 
when the Poincar6 group is allowed to act locally. The minimal replacement 
operator is obtained by direct application of the Yang-Mills procedure without 
the explicit introduction of fiber bundle techniques. Its application gives rise to 
compensating 1-forms W e, 1 <- a <- 6, for the local action of the Lorentz group 
L(4, R), and to compensating 1-forms q5 k, 1 <-- k-< 4, for the translation group 
T(4). When applied to the basis 1-forms dx ~ of Minkowski space, distortion 
1-forms B k result that define a canonical anholonomic coframe that contains 
both the T(4) and the L(4, R) compensating fields. When the canonical coframe 
is considered as a differential system on M4, it gives rise to gauge curvature 
expressions and Cartan torsion, but the latter has important differences from 
that usually encountered in the associated literature in view of the inclusion of 
the compensating fields for L(4, R). The standard Yang-Mills minimal coupling 
construct is used to obtain a total Lagrangian. This leads to a system of field 
equations for the matter fields, the T(4) compensating fields, and the L(4, R) 
compensating fields. Part of the current that drives the T(4) compensating fields 
is the 3-form of gauge momentum energy that obtains directly from the momen- 
tum-energy tensor of the matter fields on M 4 under minimal replacement. 
Introduction of the Cartan torsion in the free-field Lagrangian is shown to lead 
to a direct spin decoupling in the sense that the gauge momentum energy (orbital) 
contribution of the matter fields to the spin current is eliminated. Explicit 
conservation laws for total momentum energy current and total spin current are 
obtained. 

1o I N T R O D U C T I O N  

G a u g e  t h e o r i e s  o f  g r a v i t y  a r i se  f r o m  t h e  e x p e c t a t i o n  t h a t  g r a v i t a t i o n a l  

e f fec ts  c a n  b e  i n c o r p o r a t e d  i n t o  a P o i n c a r ~  i n v a r i a n t  t h e o r y  b y  a l l o w i n g  t h e  

P o i n c a r ~  g r o u p  to  ac t  l o c a l l y  (i.e.,  b y  b r e a k i n g  t h e  g l o b a l  h o m o g e n e o u s  

a c t i o n  o f  t h e  P o i n c a r 6  g r o u p ) .  S ince  Plo = L (4 ,  R )  [:> T ( 4 ) ,  w h e r e  L (4 ,  R )  
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is the Lorentz group, T(4) is the Abelian translation group, and D denotes 
semidirect product, local action of L(4, R) would model spin-gravitational 
interactions, while local action of T(4) would account for the momentum- 
energy contributions to gravitation in the Einstein sense. 

The current situation is not this clear cut, however. Because Plo is not 
semisimple, the Abelian ideal of the Lie algebra of Plo, which is generated 
by the Lie subalgebra of T(4), gives certain difficulties. Most current works 
(Hehl et al., 1976; Hehl, 1980; Nitsch, 1980; Kikkawa et al., 1983; and 
references therein) start with the geometry. The underlying space is taken 
to be a four-dimensional Riemann-Cartan space U4 carrying curvature and 
torsion. The primary aspect of these theories is a system of fundamental 
tetrad frames and coframes. The coframes e ~ are then identified with the 
gauge potential 1-forms that compensate for the local action of T(4). Thus, 
if �9 (indices suppressed) denotes the matter fields, minimal replacement 
becomes 

,/~ ( O i ~t  ) i = e,~DiaI/, (1) 

and 

where 

J//(L(x i, ~ ,  cg,~r)bt) = det( e~) L (x  i, ~ ,  ei~Di xlr)tz (2) 

7.1, ~. d x l  A dX2A dX3 A d x  4 

is the volume element and d/denotes the operation of minimal replacement. 
Although the results obtained in this way stem from a number of 

plausible physical arguments, there would still seem to be certain difficulties. 
These arise from the fact that the geometry is put in first and then the 
physics is overlayed by means of reasonable analogies with classical Yang- 
Mills gauge theory. Particular conceptual difficulties reside in the relation 
represented by (2). Since the e ~ are identified with the compensating 1-forms 
for T(4), it is evident that the minimal replacement construct defined by 
(2) ignores the contribution from the L(4, R) component in compensating 
for the volumetric deformation [i.e., ~( /z)  = det(e ~)/z]. This same situation 
is also in evidence in the effect of minimal replacement applied to the line 
element: 

~ (  h~ dx' dx j) = go dx' dx j (3) 

where 

h U = diag(- 1,  - 1 ,  - 1 ,  1 ) 

is the metric on Minkowski space M4 and 

gu = e'/ h,~13e~ 

(4) 
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Thus, since det(e ~) = (_g)~/2, so that (2) is consistent with the assumption 
that U4 carries a metric structure given by the above relations, there is still 
a clear absence of effects of the local action of the L(4, R) component in 
this metric structure. 

Conceptually, a simpler approach would be to start with a Poincar6 
invariant theory of matter fields ~ on Minkowski space, so that the physics 
is well established from the start. This would put the physics in first. 
Allowance for local action of the Poincar6 group would then couple the 
matter fields to the compensating fields for the local action of Plo provided 
a consistent procedure is available for dealing with groups whose Lie algebra 
contains an Abelian ideal. A previous paper (Edelen, 1984) has provided 
such a procedure through study of operator-valued Lie connections. This 
procedure was used to gauge the Poincar6 group, and hence it is explicitly 
applicable here. Unfortunately, the constructs of this paper are rather 
abstract because the problem of gauging an arbitrary Lie group was con- 
sidered. There is, however, a simple and direct manner of gauging the 
Poincar~ group that eliminates the complications of operator-valued connec- 
tions, but which agrees exactly with the results obtained through the more 
abstract analysis. This direct approach is the subject of this paper. 

2. MATRIX REPRESENTATION AND DIRECT 
MINIMAL REPLACEMENT 

The simplest way of obtaining a correct minimal replacement for the 
Poincar~ group is through realization of the Poincar~ group as a matrix Lie 
group. To this end, we consider the affine set in V5 consisting of all column 
matrices of the form 

= IX 1, X 2, X 3, X 4, 1] r (5) 

where x = Ix 1, x 2, x 3, x4] r is any position column matrix in M4. If L is a 
Lorentz transformation matrix and t = [ t  ~, t 2, t 3, t4] 7" is a translation gen- 
erator, then the Poincar6 group may be realized as a matrix subgroup of 
GL(5, R) consisting of all 5-by-5 matrices of the form 

that is, {c t} 
Let {In I 1 - a -< 6} be a basis for the matrix Lie algebra of L(4, R), and 

let {ei l 1 -< i<- 4} be a system of generators for T(4). Here, we have taken 
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canonical group coordinates in a neighborhood of the identity of  Plo to be 
{u" l l<-a<-- lO}={u '~ ,u6+i l l<- -a<-6 ,1<- i<-4  }. If  { W a [ 1 - < a - 1 0 }  are 1- 
forms on M4, then we write { W ~ } = { W ~, r 1 -< a -< 6, 1 - i -< 4}, where we 
have set W 6+i= r Since Plo has been realized as a matrix Lie group on 
Vs, we may use the standard Yang-Mills construction of  a Lie-algebra- 
valued connection matrix for Plo (Yang, 1975; Drechrler and Mayer, 1977; 
Rund, 1982): 

It is clear from (8) that F may be viewed as a connection matrix for the 
L(4, R) component,  while to is a connection matrix for the local action of 
T(4). The standard Yang-Mills construct thus gives the gauge covariant 
exterior derivative 

D~ = dx  + r x  = (9) 

When this is written out in index notation, we have 

D x '  = dx '  + W~ 1,~xkdx j + r  j (10) 

and hence 

where 

D x  i = B ~ d x  ~ (11) 

B~ = 6~ + W ~ l ~ x k  + (9~ (12) 

These formulas show that minimal replacement is well defined for local 
action of the Poincar~ group on the elements {dxi}: 

d/t( dx ' )  = D x '  := B'  = Bj dx ~ (13) 

The quantities {B~I 1 ~< i~<4} are referred to as the distortion 1-forms for 
the Poincar4 group, in analogy with defect dynamics (Kadi6 and Edelen, 
1983) that arises from gauging SO(3) t:> T(3). 

Examination of (10) shows that both the translation and the L(4, R) 
compensating fields enter into the Poincar6 distortion 1-forms. This is in 
strong contrast to previous gauge theories for the Poincar6 group noted in 
the first section. The situation becomes even more evident when we compute 
what happens to the line element of M4 under minimal replacement: 

dS 2 = d~ ( h~ dx ~ dx  j) = g~ dx ~ dx  j (14) 

where 

go = B~hkmB~' = gi, (15) 
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may be viewed as the components to the metric tensor on a space U4 that 
results from M4 under the operation of minimal replacement. Thus if we set 

B = det(Bj), g = det(go.) (16) 

then 

B = ( _ g ) 1 / 2  (17) 

and minimal replacement on the volume element of M4 gives 

~( tz )  = B/x = (-g)l/Etz (18) 

In like manner, if we set 

O = d F + F ^ F  (19) 

then (8) gives 

If  we use capital C's to denote the constants of structure of Plo, direct 
computation gives 

0 '~ = d W  '~ + I G ~ ' v W t 3  ^ W v (21) 

for the L(4, R) curvature, and 

f ~ ' = & b ' +  C~,jW' ~ ^ 4, j (22) 

for the T(4) part of the curvature. Here, we have used the fact that the 
structure constants for Plo satisfy 

a 

c,~io = C j k  = C, ~ = 0 (23) 

Curvature quantities arise directly through the relations 

D D f ~  = 0~ = [(Ox+ l l )  r, 0] 7̀  (24) 

Let us first note that (24) may be rewritten as 

D B  i =  D D x  i =  O'~l,~]..xk + O i (25) 

while the torsion associated with the differential system generated by the 
1-forms {B~[1-<i-<4} (see Edelen, 1985) is defined by 

D B  i = s  (26) 

Thus, (25) and (26) give the following evaluation for the torsion 2-forms: 

s i = 0 '~ l ~ x  k + f~' (27) 

It is then a simple matter to see from (25) through (27) that the coframe 
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{BiI 1 -< i-< 4} is anholonomic whenever the torsion 2-forms do not vanish 
identically. Further, in contrast with previous theories, the torsion 2-forms 
have contributions from the compensating fields of  both the T(4) and the 
L(4, R) components. This result have obvious and important ramifications. 
In particular, minimial replacement for P~o may be viewed as carrying M4 
to a new space U4 with metric tensor go and fundamental coframe {B~}, in 
which case U4 has both nontrivial curvature and torsion. 

Direct use of  classical Yang-Mills theory in the context of the matrix 
representation of  P~o shows that we have the following gauge t ransforma-  
tions for the connection and curvature matrices: 

'I" = M U M  -~ - d M  M -~, '0 = M O M  -1 (28)  

When (6), (8), and (20) are substituted into (28), we obtain the following 
explicit transformation laws: 

'I ~ = L r L  -1 - d L  L -1 (29) 

'to = Lto - 'Ft - d t  (30) 

'0 = LOL-1 (31) 

' ~  = LI~ - 'O t  (32) 

To round out these transformation formulas, it is easily seen that 

'B = ' (Dx) = L D x  = LB (33) 

Simple calculation then shows that it is possible to choose a local gauge 
transformation [i.e., choose L(x i) and t(xi)] that annihilates U and to if and 
only if all of  the curvature quantities vanish identically on M4. Thus the 
compensating fields W ~ and ~b k can be transformed away by the local 
action of  an element of  Plo if and only if all gauge curvature quantities 
vanish throughout  M4, 

An inspection of  (31) shows that the quantity 

trace(O A O) 

is a Plo-Covariant 4-form. We thus have the Plo-invariant scalar densities 
- -  a ~ i k  "m 

31--OoC,~Okmg gJ B 
(34) 

t ~  l,-~ ~ f l  ~ i j km 
~ 2  ~ v ij v'~ctflV k m ~  

where C,,~ are the components of the Cartan-Killing metric on L(4, R). 
Here, we have used the obvious notation 

20 '~ = 0 F dx '  a dx j, 2fl '  = fljk d ~  ^ dx k (35) 

etc. A direct inspection of  (30) and (32) shows that we cannot construct a 
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Plo-invariant 4-form from the T(4) part of the curvature II  because of the 
arbitrary translation matrix. It is, however, easily seen from the above 
transformation equations that the Cartan torsion has the transformation law 

'~ = L~ 

and we accordingly have the Plo-invariant scalar density 

- -  "~ i 14 ~ m rrjr  k s l ~  
O s  ~ j k r ~ i m ~ . a r s t 5  ~ at~ 

(36) 
~ i  ~ ~ m  _ikrs 

OZ 2 -~- ~ . j k  nim.,~,  rs ~" 

The scalar density Plo-invariants will be of obvious use later. 

3. M I N I M A L  R E P L A C E M E N T  FOR T H E  M A T T E R  FIELDS 

We now have to obtain the minimal replacement construct for the 
matter fields. In order to keep things straight, it is useful to introduce a 
collective index {A} in order to identify the various components of the 
matter field. We will therefore write {~A}, and the summation convention 
is assumed to hold for this collective index. Let {Au a} denote a point in 
the infinitesimal neighborhood of the identity in the group space of Plo. 
Since the matter fields have well-defined transformation properties under 
the global action of Plo, we have 

APlo: ~ A - - > ~ A + A u ~ ' ( f , , ~ ) A + A u 6 + ~ ( f ~ ) A + o ( A )  (37) 

where {f~ [ 1 < a -- 6} are the L(4, R) generators acting on the matter fields, 
while {f~ 11 -< i - 4} are the T(4) generators. For most matter fields considered 
in the literature, f~ = 0. We retain them in the formalism, however, in view 
of possible future needs. A comparison of  (37) with the formalism used in 
(Edelen, 1984) shows that the quantities in (37) that multiply the Au's serve 
to evaluate the Lie derivatives of the matter fields with respect to the 
infinitesimal generating vectors of P10 on kinematic space with coordinates 
{x ~, tI'A}. We thus have the gauge covariant derivative 

D ~  A = d ~ A  + W'~(f,,xP')A + 4 o ~ ( f ~ )  A (38) 

Now, 

0 = d x P ' A -Oi ~  A dx  i 

and hence minimal replacement gives 

0 = D x t  r A  - . / ~ ( a i ~ A ) D x  i 

Thus if we set 

y? = ~t(a,~ ,A) (39) 
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and use (11) and (38), we obtain the minimal replacement 

yaB~ = Oj*a + WT(L*)A + Ck(fk~)a  (40) 

now explicitly assume the regularity condition 

B # 0 (41) 

Under satisfaction of (41), we have 

b~B k : B~b~ : 6~ (42) 

and hence (40) gives the explicit evaluation 

~ ( 0 , ~  a) : yi A = b~{Oj~ A + W ; ( L ~ ) A +  ~b~(AV) a} (43) 

This result seems unduly complicated on first examination. However, 
when all of the compensating fields W ~ and ~b ~ all vanish, both B and b 
become the identity matrix and (41) reduces to ~ ( 0 ~  a) = 0 ~  A, as indeed 
it must. Further, the quantities within the curly brackets are the components 
of the gauge covariant derivatives of the matter fields, while the left multipli- 
cation by b accounts for the presence of local Poincar~ transformations of 
the independent variables. Thus, (41) is exactly what is required in view of 
the fact that P~o acts on both the independent variables and the matter fields 
simultaneously. 

4. MINIMAL COUPLING 

The physics of the matter fields is described by a Poincar~ invariant 
action 4-form L/~ on Minkowski space. Under local action of Plo, the action 
4-form becomes 

~/(L(x',  ~a ,  Oixita)l~) = L(x i, ~a,  ya)Bl~ (44) 

The modified Lagrangian, LB, does not depend on any of the derivatives 
of the compensating fields W ~ or 4~ i. This is remedied by the now famous 
Yang-Mills minimal coupling construct; LB is replaced by LB + V, where 
V is an invariant scalar density that is formed out of the Plo curvature 
quantities 0 r and ~i, respectively. We accordingly have the total Lagrangian 

s  L(x', ~A, yA)B + V(x', 0F, a~,  W7, ck) (45) 

The end of the second section showed that the quantities /3 are Plo- 
invariant scalar densities formed from the L(4, R) curvature coefficients 
and are quadratic in the latter. On the other hand, we saw that it was 
impossible to form a similar Plo-invariant scalar density from the curvature 
coefficients associated with T(4). Rather, it was necessary that we construct 
the requisite scalar densities a from the coefficients of the Cartan torsion 
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l~. It would thus, perhaps, be better to write 

~'( x~, 01, ~k) instead of V(x j, 0 I, 1-1 k) (46) 

Here, we recall for later purposes that the components of the Cartan torsion 
are given by 

Ek=~.VO.l~r, . ,+ i l k  (47) 

The combined action functional for the P~o gauge field theory of matter 
fields is thus given by 

I[+a,  WT, 4~3 = ~ (LB+ V)lz (48) 
J M4 

5. FIELD EQUATIONS 

The field equations for the theory obtained directly by rendering the 
action integral (48) stationary with respect to the field variables 

~A, W~, and qS/k 

Variation with respect to these field variables induces variations in the 
subsidiary quantities 

B, ya, 0F ' ak  

These are readily computed through use of (12), (16), (21), (22), and (40). 
The only slightly difficult part arises with the y's, and here (40) rather than 
(43) is definitely easier to use. 

The total Lagrangian, /2, is given by /2= LB + V, where L does not 
depend on the O's and O's, and V does not depend on the ~ ' s  and the y's. 
The following notation will therefore be useful: 

G~ = -GJ~ =OV/O0~, G~= -C?~ =OV/Of~ k (49) 

sk=(ov/ow,)lo.., sk=' (ov/o f)lo.. (50) 

where the notation in (50) is used to signify evaluation of the derivatives 
at constant O's and O's, and 

L~a = OL/Oy A (51) 

These latter quantities enter into what we term the gauge momentum energy 
complex of the matter fields, 

T} = L~Ay A -  6jL, (52) 

since they obtain by direct minimal replacement applied to the momentum 
energy complex of the matter fields. 
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Direct calculation shows that the field equations for the matter fields 
with P~o gauge field interactions are given by 

�9 i " i Oj{Bb~iLA} - B OL/Oa~ "A = B ~ L E {  W ~  o(f,~aJLr)E / o ~ A  + qb; O ( f k  ~ z f ) E  / o ~ I  "tA} 

(53) 
Stationarization of the action functional with respect to the ~b's gives the 
field equations for the translation compensating fields 

oiGiJk + [", m lliZa l,"2ij 1 m m a " 1 j '-'k ~ ..~ , - , , . = ~ g { - T k  +LA( fk~I  ' )  }b ' , .+~Sk (54) 

The L(4, R) compensating field equations are 

0 # W ~ G  U + ~ m .t.kf:_O cgiGa+Ca ~ i [3 ,-.~ ktgi~.Jm 

_ _ t  m k r -~B{-Tk l.,x + L7(fo*)A}bJm+�89 (55) 

Fields of elementary matter are customarily envisioned as representa- 
tions of the isotropy subgroup of P~o, namely, L(4, R). Restricting attention 
to such fields gives 

( f ,  xi~,)A = M , A . n ,  ( f . ) a  = 0 (56) 

where the M's are the explicit representation matrices induced by the 
infinitesimal transformations of L(4, R). When the evaluations (56) are 
used, the field equations become 

�9 i c t  B " i Oj{ Bb~iLA} - W )  MaA{ Bb~iL~} = B O L /  OXt c A  (57) 
ij = 2{OiGk-- ur~ i "-',~mk"'m ~ Utj _ T,~ BbJm + SJk (58) 

2 { O i G ~ -  r ~ fl ,t'~iJl - 'J m k r m A E " d. k[-~ m {'2ij W i  C" v ~t_r~j - , ~  - - { T k  l ~ x  - L A M ~  }BbJm - w i , ~  k'-'~ 

(59) 

The quantities ~ =a~dt z, 1 -  i---< 4, form a conjugate basis for 3-forms 
on M4. Thus since 

./t/(0~) = ~ Oj, 1-i--<4 (60) 

are the elements of the basis dual to the distortion 1-forms B', and ~ ( / x ) =  
Btz, we have 

~(/~,) = B ~ m  (61) 

Direct use of these results shows that 

At ( UAI~j ) ---- Bt~ L ~tzj (62) 

Further, it follows directly from 

d x  i _] l~.j =- ~ ~ ].1, 

that 
�9 i " i d (  B ~ L a t z j )  = Oj( B ~ L A ) p ,  (63) 
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Accordingly, (57) can be written in the equivalent form 

�9 i a B " i - -  

{B~LBIXj}  - d{B~LAI .* j}  - W M,~A ^ (OL/OXI2"A)BI.~ (64) 

The various terms in the matter field equations are thus seen to arise directly 
from the minimal replacement construct. Further, (64) shows that these 
equations are covariant under changes of coordinate covers of M4. We also 
know that the field equations (64) are covariant under the local action of 
Plo, and hence under the local action of L(4, R), while W" are the com- 
pensating 1-forms for the local action of L(4, R). Accordingly, we may 
write (64) in the equivalent form 

D{Bb~L~tz j}  = ( O L / o ~ A ) B t  x (65) 

where D is the L(4, R)-gauge covariant exterior derivative 

D R A  = dRA - W'~M,~.~ ^ R e  (66) 

The direct minimal replacement construct is thus seen to induce the L(4, R)- 
gauge connection 1-forms 

= W M,~A (67) 

for the matter fields. 
If we introduce conjugate basis elements 

tzq = O~ -J tzj, dxk A t ~  = ~ tzj -- ~. tz~ 

for 2-forms on M4, a similar analysis shows that (58) and (59) may be 
written in the equivalent form 

d{O~t.L,j}_ W , ~ C Z k  ^ U m " + S ~ j  (68) { Gmlzij} = - Tk  BtY,.tzj 

d{  O ~ } -  W~'C~fl,~ ^ {O~o} 
m " k r = - - ( T k  BbJml.tj)l,~r x .4- q~kckmo, ^ {oq/./,q} 

+ ( B b J k L k A ~ j ) M ~  B + S~I~  (69) 

These equations show that the field equations for the ~b's and the W's 
are independent of the choice of coordinate covers of M,. It is also evident 
that the left-hand sides of these equations define L(4, R)-gauge covariant 
derivatives in the obvious manners, since these field equations are Pl0-gauge 
covariant by constructions. 

The terms involving the S's are obviously self-sources of the ~b and W 
fields, in view of (50). Noting that T~ are the components of the gauge 
momentum energy complex of the matter fields, it is natural to identify 

T k  ~ i " T k B ~ t z j ,  1 --- k - 4 (70) 
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as the 3-forms of  gauge momentum energy; that is, 

i i " ~ (  tktzi) = TkB~I~j 

by (62), where the lower case t's denote the momentum energy complex of 
the matter fields before minimal replacement. These considerations, in 
conjunction with (68), show that the ~b compensating fields are driven by 
the self-sources and the gauge momentum energy 3-forms of the matter 
fields. The ~b-field equations (68) thus have the same general structure as 
Einstein's field equations; {geometric (compensating) quantities}= 
{momentum energy quantities}. We will have more to say on this subject 
in the next section. 

The W fields are compensating fields for the local action of  L(4, R) 
and hence the W-field equations (69) should describe spinlike quantities 
and effects. Indeed, the quantities 

m j k r  k r  ( Tk Bb,,lxj)l~rX - Tk l~rx 

on the right-hand sides of  (69) are four-dimensional moments of the 3-forms 
of  gauge momentum energy of  the matter fields. These terms thus represent 
the "orbital" contributions of the matter fields. Similarly, the terms 

j m A B ( BbmLAIxj)M~B~ 

are easily seen to be the gauge-theoretic analog of  spin 3-forms of the matter 
fields. When we note that 

1 ~ - Cj i  = - Cj~ (71) 

for the standard representation of P10 on M4, the terms on the right-hand 
side of (69) that involve the &'s explicitly are 

--~bkl~ ^ {G0/xO} 

and may be interpreted as "orbital angular momentum" of the translation 
compensating fields. These arguments provide a reasonable heuristic basis 
for accepting the field equations (69) for the L(4, R) compensating fields 
as also being in the same spirit as the Einstein field equations; albeit 
four-dimensional "moment"  relations. 

6. DEC OUP LING THE SPIN AND ORBITAL CURRENTS 
OF MATlrER 

The fact that the matter fields contribute both a spin current and an 
orbital current to the field equations for the L(4, R) compensating fields is 
not all together satisfactory on several grounds. We therefore proceed to 
eliminate the orbital current from (69). 
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It is easily seen from (27) that ~'~k c a n  be expressed in terms of 0 ~ and 
Ek Accordingly, we may always write 

V = 17(x', 0~, X~, WT, d~) (72) 

with no loss of generality. It then follows directly from (27), (49), and (72) 
that 

G~ = 0 V/Ofl~ = 0 17/0X ~ (73) 

and hence the field equations (68) are unchanged. On the other hand, the 
same reasoning gives 

G~ ~u- k r e+Hi  (74) : ( J k l a m  X 

where 

H~ = (o ?/o~)k ( 7 5 )  

It is now simply a matter of substituting (74) into (69) and using the Jacobi 
identity, (12), (13), and (71) several times in order to see that (69) is 
equivalent to 

d { H~tz U} - W ~ C ~  ^ {n~/~} 
" k A B k m i 

- -  (Bl3dkLAIzj)M~n qt + ( S i a  - l~mx Sk)~Z,-- B k l ~  ^ {G~0}  (76) 

This simple procedure of using L(4, R) curvature and Cartan torsion, rather 
than L(4, R) curvature and T(4) curvature, has eliminated the orbital current 
of the matter fields from the L(4, R) compensating field equations. Particular 
note should be taken of the fact that the distortion 1-forms B k have become 
the "moment arms" in the Gm contributions to the total spin currents. 

There is yet another benefit to be gained from this choice. Now that 
17 is a function of O ~ and X k, it can be expressed in terms of P~0-invariant 
scalar densities such as a~ and ~[~1 given by (36) and (34), respectively. It 
is then reasonable to expect that 17 will be of the form 

17=U(x', ~ k 0~, Xij)B (77) 

In this case, (50) gives 

~ i .  k ,, (78) S~ = UBb~, S~ : akt~mX 

and hence 
i k m i _ _  (S,~ - l~mX Sk)tz, = 0 (79) 

This has the effect of eliminating all of the self-sources from the L(4, R) 
compensating field equations, for (76) reduces to 

iS d{H,~Iz o} - W v C f  ~ ^ {H~/z~j} 

= (Bb{LkAl~)M~a~*" - B k l ~  ^ {G~/z,J (80) 
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where 

c~ = B o e/o:~,  H ~  = B ( a  U/OO~)I~ (81 )  

The field equations of  the theory are thus (57) for the matter  fields, 
(58) for the T(4) compensat ing fields, and either (76) or (80) for the L(4, R)  
compensat ing fields. They should be compared and contrasted with the 
field equations given in the papers cited in the list of  references, for there 
are significant differences. 

7. CURRENT CONSERVATION 

Current  conservation lzws are easily obtained directly from (58) and 
(80) in view of  the skew symmetry of Gk and H~. We thus have 

a j {2u , , ,~ ,~  ,- ~ ,,, " J , ,  t ~ ,  k,-,m -- Tk  Bi t , ,  + Sk}  = 0 (82) 

from (58), and 

a j { B b J k L k A M  A ~ .  k , .  ~j ~ t~ ~J Bi  1 , k G m + 2 W ,  C~ ,H~} = 0 (83) 

We have chosen to write these conservation laws as simple coordinate 
divergences that have simple and direct interpretations in the underlying 
space M4. The reader should carefully note that the forms of these conserva- 
tion laws can change drastically under gauge transformations since they 
are not gauge covariant equations. In view of  the gauge covariance of  the 
field equations, these conservation laws can be rewritten as gauge covariant 
conservation laws upon introducing the appropriate  gauge covariant exterior 
derivatives. This only complicates the issue, however, and even hides the 
essential ingredients, in much the same way that the covariant conservation 
laws of  momen tum energy in general relatively conceal some of the essential 
physics. 
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